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Abstract
Objectives: To review gut microbiota in aging-associated diseases.
Design: A review study.
Participants: People over 60 years of age with microbiota dysbiosis.
Outcome measures: The occurrence of aging-associated diseases, including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), osteoarthritis (OA), prostate cancer (PC), and colorectal 
cancer (CRC). 
Results: The microbiome plays an essential role in the maturation, function, and regulation 
of human life from birth to old age. Human life, in turn, has co-evolved interactions with the 
trillions of beneficial microbes that inhabit our bodies while developing efficient responses 
to combat invading pathogens. Along with this, both human life and the gut microbiota 
(GM) undergo major modifications in conformation and function that resulted in increased 
vulnerability to infections and other age-related diseases such as Parkinson, Alzheimer, and 
OA.
Conclusions: The GM is involved in a variety of physiological and pathological processes. Its 
role in age-related diseases is well recognized and has been identified as a promising therapeutic 
target. Moreover, the microbiota of the elderly population exhibits unique microbial signatures 
that link the natural aging process to changes in the composition of the GM. 
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Introduction
According to estimates made, one-sixth of the world’s 
population will be over 60 years old by 2030.1 In other 
words, the proportion of the population over 60 will 
increase from 1 billion in 2020 to 1.4 billion.1 Subsequently, 
the world’s population over 60 years will reach more than 
double (2.1 billion) by 2050. Furthermore, between 2020-
2050, the population over 80 years old is expected to 
triple and reach more than 426 million people.2 Aging is 
associated with modifications in physiological, dynamic, 
biological, environmental, behavioral, psychological, 
and social progressions.3, 4 Some age-related changes 
are benign, while others result in impaired activity and 
sensory function of daily life, increased susceptibility to 
and incidence of disease, and disability. In fact, aging is a 
major risk factor for many chronic diseases.5 The human 
body is colonized by trillions of microbial cells during all 
parts of life.6 The collection of all microorganisms, their 
environmental conditions, genes, and the inside and 
outside the human body, called the human microbiome, 
make up the human ecosystem. Everyone has an exclusive 
microbiome that becomes more and more unique with 
age.5, 7 This may reflect the highest lifetime interactions, 
including demographic and environmental influences. 
These diverse microbes typically coexist pleasantly 

with their hosts and, in some cases, help maintain their 
health and immune function which may prevent disease 
progression.8 The gut microbiota (GM) plays an important 
role in maintaining host local and systemic physiology.8, 9 
In other words, the various beneficial functions of GM 
include nutrient metabolism, intestinal homeostasis, 
maintenance of immune system homeostasis, immune 
regulation of the host digestive system, and intestinal 
mucosal development and metabolic activity.10, 11 
Different studies have shown that the population of gut 
microorganisms changes during the lifetime. For example, 
findings revealed that Clostridium clostridioforme, 
Finegoldia magna, and Bifidobacterium dentium were 
amplified abundantly in the elderly.12 The factors that 
lead to changes in microbiota composition and function 
with host aging are largely unknown and involve direct or 
indirect microbial selection by host-microbe interactions 
and microbial evolution.13 The main focus of the current 
study was to introduce diseases related to GM in old age. 
In addition, this study described microbial types and key 
biomarkers of disease. In other words, readers of this 
overview would gain valuable information about diseases 
that are common in older adults such as Parkinson’s 
disease (PD), Alzheimer’s disease (AD), arthritis, and 
prostate cancer (PC) as well as their relationship to the 
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gut microbiome. 

Methods
PubMed databank was searched to recognize publications 
from peer-reviewed journals. We used Medical Subject 
Heading terms, including, ‘aging’, ‘microbiome’, 
‘microbiota,’ ‘dysbiosis’, and ‘diseases’ in combination 
with further free terms such as ‘Parkinson’s disease’ 
‘Alzheimer’s disease’, ‘osteoarthritis’, ‘colorectal cancer’, 
‘prostate cancer’, and ‘elderly’. Furthermore, medRxiv 
(https://www.medrxiv.org/) was investigated for pre-
print articles with ‘aging AND microbiota’ keywords. The 
search was conducted on March 11, 2023, and no search 
filters on publication type, language, or other field’s 
expected time periods were employed. Reference lists of 
all relevant publications were then manually selected to 
identify advanced qualified studies.

Results
Aging-Associated Diseases 
Aging is an irreversible and gradual pathophysiological 
process.14 A decline in cell and tissue function greatly 
increases the risk of several age-related diseases, including 
cardiovascular, neurodegenerative, metabolic, immune, 
and musculoskeletal diseases.15, 16 The progress in present 
medicine has encouraged human health and significantly 
improved life expectancy, but with population aging, 
various chronic diseases have increasingly become 
the main cause of infirmity and mortality among the 
elderly.16, 17 Considering the multifactorial nature of 
aging and its direct relationship with environmental and 
genetic factors (e.g., the accumulation of DNA damage, 
telomere shortening, and metabolic changes), modifying 
the molecular mechanisms that cause aging is a difficult 
task.18, 19 On the other hand, epigenetic regulators with 
genetic and environmental influences at the cellular, 
molecular, and systemic levels respond to stress through 
complex molecular mechanisms and the overproduction 
of reactive oxygen species and have synergistic effects 
on aging.20, 21 Collectively, these mechanisms prevent 
cells from altering metabolic and gene expression 
patterns, induce high reactive oxygen species production, 
and maintain the senescent phenotype of cells.22 The 
results of various studies demonstrated that the above 
modifications and molecular mechanisms are directly 
related to the occurrence of aging-related diseases.22 
Meanwhile, the microbiome is one of the important 
factors that directly or indirectly plays a critical role in 
the occurrence of molecular changes and subsequently 
the occurrence of various diseases related to old age.23 
The role and relationship of microbiota with various 
age-related diseases have been fully determined although 
the involved molecular mechanisms are somewhat 
unknown.24 Alzheimer’s, Parkinson’s, osteoarthritis (OA), 
and some metabolic diseases such as diabetes are among 
the important diseases related to the microbiome in old 
age.24 In the following, more details about the relationship 

between the microbiome and these diseases will be 
discussed.

Microbiome Evolution and Related Disorders in Life 
Time
The composition of the adult microbiome is individually 
specific, showing a persistent trend towards a core 
microbiome with aging.25 The exact composition of the 
microbiome in older adults (aged over 65) can exhibit 
extreme short-term fluctuations. The core microbiome 
appears to be resistant to environmental changes.26 
Despite some primary evidence to the contrary, it is clear 
that the host contributes to the selection of microbiome 
composition.27, 28 Microbiota development is widely 
believed to begin at birth, but this episode is challenged 
by the limited number of studies that have identified 
microbes in uterine tissues such as the placenta.29 
Colonization and life events such as antibiotic treatment, 
disease, and dietary changes cause unregulated changes 
in the microbiota.30 High levels of lactobacilli during 
the first few days reflect a high lactobacilli load of the 
vaginal flora.31 Accordingly, the finding revealed that 
Bifidobacterium longum subspecies longum subspecies 
infantis are dominant in infants.32 Accordingly, exposing 
the infant to antibiotics via the umbilical cord affects the 
infant’s gut microbiome and not only reduces beneficial 
commensal organisms such as Bifidobacteria but also 
increases potential pathogenic bacteria such as Escherichia 
coli and Enterococci.33 Neonatal disorders mean the 
disruption of the normal state of the body and organs and 
the irregular function of a newborn. Obstetricians play 
a key role to reduce the number of neonatal disorders.34 
Respiratory dysfunction, birth trauma, neonatal infection, 
congenital malformations, and hemolytic disorders of 
the newborn are some cases of frequently encountered 
neonatal disorders. The intestinal microbiota changes 
during human life are illustrated in Figure 1.35 

Findings show that most changes occur with age, and 
this microbiota change is associated with the emergence 
of age-related diseases. It has become one of the research 
goals of researchers in recent years. In the following, the 
role of GM in aging-associated diseases is discussed. 

Discussion
The Role of Gut Microbiota in Aging-Associated Diseases
Parkinson’s Disease 
PD is characterized by the loss of dopaminergic neurons 
and intracellular inclusions composed primarily of 
α-synuclein (α-syn), but the underlying mechanisms 
are still unclear.37 During the last decade, several studies 
have focused on the relationship between the gut and PD 
pathology. Alterations in gut microbiome composition 
have been defined in many neurodegenerative disorders, of 
which PD has been considered most extensively.38 Several 
studies supported the idea that high consumption of milk 
derivatives, in general, is associated with an increased 
risk of PD.39-41 Several studies have been conducted that 
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characterize changes in the gut microbiome. The findings 
revealed that abundance of the Bifidobacteriaceae, 
Pasteurellaceae, Lachnospiraceae Lactobacillaceae, 
Christensenellaceae, and Verrucomicrobiaceae families 
significantly alter in PD.42 Additionally, it has been 
confirmed that GM regulates neuroinflammation, 
synucleinopathy, and motor impairments in a rodent 
PD model.43 Microorganisms differ in their cellular 
architecture and tendency to initiate pattern recognition 
receptors in signaling pathways, leading to inflammation.44 
It is suggested that improved concentrations of 
E. coli and the proteobacteria Ralstonia decrease 
plasma lipopolysaccharide-binding protein leading to 
higher endotoxin exposure and promoting intestinal 
inflammation.45 This inflammation is associated with the 
improved expression of the pro-inflammatory cytokines 
interferon-γ, interleukin-6, tumor necrosis factor-alpha, 
interleukin-1β, and amplified activation of intestinal glial 
cells consistent with colonic biopsies from PD patients.46 
Scientists reported that short-chain fatty acids (SCFAs) are 
important metabolites of GM and that PD patients have 
lower fecal SCFA concentrations compared to healthy 
controls.45 Several studies have displayed a decrease in the 
frequency of Lachnospiraceae, known for their abundant 
production of SCFAs, in PD patients.47, 48 In addition, 
SCFAs have been suggested to be a key factor in inducing 
microglial activation and accelerating α-synuclein 
damage in mouse models, thereby ameliorating PD 
pathophysiology.47, 48 An important aspect of the 
interaction between the microbiome and host is the barrier 
function of the intestinal epithelium.49 Barrier disruption 
can generate a positive response loop relating intestinal 
reactive oxygen/nitrogen species, inflammation, in the 
intestinal lumen, and changes in microbial composition.50 
The destabilization of the protective gastrointestinal 
barrier due to the translocation of bacteria or bacterial 
products such as lipopolysaccharides has a critical 
effect on the ‘microbiota–gut–brain axis’.50 This leads to 
intestinal inflammation and oxidative stress that induces 

enlarged α-syn aggregation and mucosal permeability 
in the enteric nervous system.51, 52 Improved intestinal 
permeability, or intestinal leak, has been displayed in PD 
patients compared to mouse models and healthy controls 
of PD that correlate with tissue oxidative stress and 
increased intestinal α-syn deposition.50, 53 

Alzheimer’s Disease 
AD is a progressive neurodegenerative disease 
characterized by the inability to perform daily activities, 
memory loss, dramatic personality and behavioral changes, 
and the late stages of the disease.54 An association has 
been verified between cerebral amyloidosis, inflammatory 
gut bacterial taxa, and peripheral inflammatory markers 
in people with cognitive impairment in old age.55 The 
results of this study showed that increased blood levels 
of pro-inflammatory cytokines such as interleukin-
1β, interleukin-6, chemokine (C-X-C motif) ligand 2, 
and NLRP3 are associated with decreased levels of E. 
coli in dementia and amyloidosis patients.56 A positive 
relationship was correspondingly shown observed 
between the number of pro-inflammatory bacteria 
belonging to the taxon Escherichia/Shigella in fecal 
samples, and pro-inflammatory cytokines.56 A negative 
correlation was found between bacterium belonging to the 
taxonomic group of E. coli.56 A microbiological research 
established a reduction in several microorganisms as well 
as the Actinobacteria phyla, in particular, bacteria of the 
genus Bifidobacterium, and Firmicutes. Additionally, a 
proliferation of bacteria belonging to the Bacteroidetes 
and Proteobacteria phyla was provided successfully in the 
intestinal microbiome of AD patients.57 Moreover, a study 
revealed substantial microbiome differences in AD patients’ 
bowels of taxonomic groups such as Ruminococcus, 
Lachnospiraceae, Bacteroides, Actinobacteria, and 
Selenomonadales.58 However, qualitative changes in the 
GM of AD patients were somewhat different compared 
to healthy controls. Furthermore, the number of 
Bacteroidetes strains decreased, whereas that of Firmicutes 

Figure 1. The Human Microbiome and Its Onset and Development in Lifetime. Source. Satheesh et al36
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strains did not change compared to healthy subjects. These 
variances could be associated with many factors, including 
comorbidities, culture, lifestyle, and dietary favorites.59 
GM metabolites such as SCFAs, trimethylamine-n-oxide, 
and lipopolysaccharide are recommended to mediate 
systemic intracerebral amyloidosis and inflammation via 
endothelial dysfunction. Developing data suggests that the 
fungal microbiota could also influence AD pathology.60 
The involvement of the GM in the development and 
progression of AD has been demonstrated, but despite 
early evidence of the involvement of inflammatory 
pathways, its precise role has not been described. Given 
the reported changes in GM of patients with AD, phylum 
replacement may have therapeutic implications.61

Osteoarthritis 
OA is an important degenerative joint disease, affecting 
an estimated 18% of women and 10% of men worldwide, 
representing 60 million people across the world.62, 63 
These statistics are estimated to increase in the next years 
owing to the increasing occurrence of aging and obese 
populations, both of which are critical risk factors for 
OA.62, 63 Findings indicated that the gut is a stimulating and 
innovative target for OA therapy. Nutritional variation or 
supplementation with prebiotics, fiber, or probiotics could 
exert a positive impact on the gut joint axis.64 Alterations 
in the microbiome are strongly associated with individual 
OA risk factors related to both the OA disease process 
and microbial DNA patterns in the gut microbiome and 
joints. Microbiome-targeted interventions may prevent 
or reduce the progression of OA.65 Forthcoming works 
should explore the basis of these microbiome-associated 
mechanisms and describe the beneficial potential of 
microbiome enhancement.66 The original study showed 
an association between the plasma microbiome and 
serum lipopolysaccharides in obese OA patients, revealing 
altered intestinal permeability.67 Lactobacillus species 
(LA) are widely used probiotics with well-known anti-
inflammatory and antibacterial effects. LA has also been 
presented to relieve pain and inhibit cartilage destruction 
in a chemically-induced OA animal model.68 Intestinal 
barrier dysfunction has similarly been described in OA. 
Conversely, it is not clear whether LA species can modify 
intestinal inflammation and restore the GM throughout 
OA treatment.68 Moreover, the finding demonstrated that 
the microbiome threatens joint tissue integrity during 
the OA disease progress, which was accompanied by 
important modifications in the OA gut microbiome.

Prostate Cancer 
Emergent data confirming that the microbiome is 
involved in the progress and treatment of PC through 
two molecular pathways69: (A) direct effects of 
microorganisms or microbial metabolites on the prostate 
or urine and (B) indirect effects of microorganisms or 
microbial metabolites on the gastrointestinal tract.69 In 
addition, the GM may act as a source of testosterone 

that influences PC progression.70 Men with castration-
resistant PC have enlarged amounts of GM with 
androgenic function.70 Furthermore, males with high-
risk PC exhibited a specific gut microbial profile, and 
GM outlining could be an influential tool for screening 
males with high-risk PC.71 However, lifestyle changes 
can improve the gut flora, and altering the GM through 
prebiotic or probiotic interventions can prevent or delay 
the development of PC.72 Streptococcal and Bacteroides 
species were discovered as the most copious bacteria in 
patients with PC. Moreover, pathways related to arginine 
and folate metabolism were changed in patients with PC. 
Correspondingly, findings indicated the enhancement of 
Bacteroides in PC and Eubacterium and Faecalibacterium 
in non-cancer controls.73 A microbiological study 
demonstrated that Rikenellaceae, Lachnospira, and 
Alistipes were considerably higher in those at a high 
risk of PC.74 In addition, 16S rRNA sequencing as a 
genetic-based technique indicated that Streptococcus and 
Bacteroides species are higher in males with PC.75 The 
regulatory mechanism of PC by the GM was mysterious 
until Japanese scientists newly found that antibiotic 
administration suppresses high-fat diet-induced PC 
growth in a Pten-knockout PC mouse model.76

Colorectal Cancer 
Colorectal cancer (CRC) is the third usual cancer type and 
the fourth most common cause of cancer-related deaths.77 
Most cases of CRC are identified in Western countries, 
and their incidence is growing year by year. The odds of 
developing CRC are approximately 4%-5%, and the risk 
of developing CRC is related to individual characteristics 
and habits such as age, chronic medical history, and 
lifestyle.78, 79 In addition to dietary effects, some degrees 
of plasticity in the human gut ecosystem can be detected 
in response to less clear environmental stressors such as 
climate and geography as well as degrees of exposure to 
environmental bacteria.77, 80 The latter is most important in 
upbringing and maintenance.77, 80 Aging can directly affect 
the structure of the GM through age-related physiological 
processes, including local and systemic inflammation, 
and it can indirectly affect people, leading to dietary and 
lifestyle changes.79 More details of GM in aging-associated 
diseases are summarized in Table 1.

Conclusions
A growing body of experimental in vitro and in vivo 
animal studies and epidemiological evidence strongly 
recommend that gut microbiome influences the 
progression of diseases in the elderly such as PD and AD. 
Studies of the gut microbiome in aging-associated diseases 
are highly complex, indicating that numerous important 
confounding factors need to be cautiously considered in 
future studies, including studies on geographic/population 
and methodology differences. Although the association 
between aging diseases and microbiome appears modest, 
we were able to identify several consistent microbiota 
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features with important clinical correlates. Overall, 
the results of this review suggest that GM composition 
changes in patients with aging, and changes in GM may 
influence disease progression. However, these results are 
fully correlated, and to assess whether GM alterations 
directly influence the pathogenesis of age-related diseases, 
results of therapeutic clinical trials on microbiome-
mediated human aging are required. The GM is involved 
in a variety of physiological and pathological processes. Its 
role in age-related diseases is well recognized and has been 
identified as a promising therapeutic target. Moreover, 
the microbiota of the elderly population exhibits unique 
microbial signatures that link the natural aging process to 
changes in the composition of the GM. 
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